

Big Data and AI for Compliance Prediction

Andre Dekker | Medical Physicist | Professor of Clinical Data Science Maastro Clinic, Maastricht University, Maastricht UMC+

Disclosures

- Research collaborations incl. funding, consultancy and speaker honoraria
 - Pharma: Roche, Johnson & Johnson, Bristol-Myers
 Squibb
 - MedTech: Varian Medical Systems, Siemens, Philips, Sohard, Mirada Medical, ptTheragnostics, OncoRadiomics
 - Health insurance: CZ Health Insurance
- Spin-offs and commercial ventures
 - MAASTRO Innovations B.V.
 - Medical Data Works B.V.
- Various patents on medical machine learning
 & Radiomics

- Public research funding
 - Radiomics (USA-NIH/U01CA143062),
 - duCAT&Strategy (NL-STW)
 - CloudAtlas, DART&Decide, SeDI (EU-EUROSTARS)
 - BIONIC, TRAIN ELIXIR (NL-NWO)
 - PROTRAIT&TraIT2HealthRI (NL-KWF)
 - Data4LifeSciences (NL-NFU)
 - Digital Society Agenda Health&Well-Being (NL-VSNU)

General rationale Big Data & Al Prediction of Outcomes

NSCLC (Lung Cancer)

2 year survival

158 patients

5 MDs

Prospective

AUC: 0.56 == flipping a coin

General rationale Big Data & AI – Learning Health Care

Elderly patient

- Elderly not often included in trials, not well known how they respond to RT
- Elderly patients more often non-compliant
 - In trials (CONVERT): 34% vs 13%
 - In clinic
- Many factors that may cause non-compliance in elderly (multimorbidity, frailty, weaker immune system, social isolation)
- Age is often in factor in our models predicting toxicity
 - "Baseline" xerostomia & dysphagia (head & neck cancer)
 - Radiation pneumonitis (lung cancer)
 - Cardiac toxicity (breast cancer)

Table 2. Radiotherapy Compliance per Age Group							
Arm (N)	Dose (Gy) n (%)			No. Fra n (%)	actions		
BD (249)	<44	44-46	>46	<28	28-29	30	>30
<70 (220)	1 (0.4)	216 (98)	3 (1)	10 (5)	18 (8)	191 (87)	1 (0.4)
≥70 (29)	0 (0)	29 (100)	0 (0)	2 (7)	5 (17)	22 (76)	0 (0)
OD (240)	<60	60-62	64-68	<30	30-32	33	>33
<70 (202)	17 (8)	16 (8)	169 (84)	13 (6)	23 (11)	165 (82)	1 (0.5)
>70 (38)	5 (13)	3 (8)	30 (79)	3 (8)	8 (21)	27 (71)	0 (0)

BD, twice-daily; OD, once-daily.

13% 24%

Factors	N	oncompliant patients, n (%)	Compliant patients, n (%)	P	
Age (years)					
20-40	10%	4 (15.4)	55 (31.1)	0.07	
40-60		12 (46.1)	86 (48.6)		
>60	22%	10 (38.5)	36 (20.3)		
Gender					
Male		22 (84.6)	94 (53.1)	0.002	
Female	4 (15.4)		83 (46.9)		
Primary tumor site					
Head and neck		22 (84.6)	116 (65.5)	0.14	
Cervix		3 (11.5)	39 (22.1)		
Breast		1 (3.9)	22 (12.4)		
AJCC stage					
I		0	4 (2.3)		
II		2 (7.7)	73 (41.2)		
III		20 (76.9)	75 (42.4)		
IV	4 (15.4)		25 (14.1)		
CCRT					
Yes		25 (96.1)	93 (52.5)	< 0.001	
No		1 (3.9)	84 (47.5)		
Distance (km)					
<50	7 (26.9)		94 (53.1)	0.03	
50-100	10 (38.5)		53 (30)		
>100	9 (34.6)		30 (16.9)		
Finance					
Paid	17 (65.4)		123 (69.5)	0.67	
Free	9 (34.6)		54 (30.5)		

AJCC=American Joint Committee on Cancer; CCRT=Concurrent chemo-radiotherapy

Elderly patient

- Age is often in factor in our models predicting toxicity
 - "Baseline" xerostomia & dysphagia (head & neck cancer)
 - Radiation pneumonitis, dysphagia (lung cancer)
 - Cardiac toxicity (breast cancer)

Output Dyspnea Model Probability to develop acute severe (>= grade 2)

Probability to develop acute severe (>= grade 2) dyspnea: **18**%

95% Confidence interval: 12% - 25%

Interpretation: If there would be a group of 100 patients with the same characteristics as this individual patient, 18 patients would develop severe dyspnea (>=grade 2) after the radiotherapy treatment. Due to the fact that a model can never be completely the same as the "real world", the number 18 could be lower or higher, but 18 is the most likely value. The 95% confidence interval indicates that the value will lie between 12 and 25 in 95% of the times that you would

Output Dyspnea Model

Probability to develop acute severe (>= grade 2) dyspnea: 27%

95% Confidence interval: 19% - 37%

Interpretation: If there would be a group of 100 patients with the same characteristics as this individual patient, 27 patients would develop severe dyspnea (>=grade 2) after the radiotherapy treatment. Due to the fact that a model can never be completely the same as the "real world", the number 27 could be lower or higher, but 27 is the most likely value. The 95% confidence interval indicates that the value will lie between 19 and 37 in 95% of the times that you would

First try in predicting compliance

 Doctors find it hard to predict toxicities

 Aim: A simple, transparent model (decision tree) that can predict compliance in elderly patients receiving RT

 Accepted for publication in Frontiers in Oncology

Table 2Comparison of doctors' versus models' predictions.

	Outcome	Doctors'	
		AUC	95% CI
Timepoint 1	Dead within 2 years	0.56	0.46-0.67
	Dyspnea	0.59	0.44 - 0.74
	Dysphagia	0.52	0.39-0.66
Timepoint 2	Dead within 2 years	0.56	0.36-0.75
	Dyspnea	0.61	0.35-0.88
	Dysphagia	0.64	0.34-0.83

p-Value assessed with DeLong's test for two correlated ROC curves.

Dataset

- Gil Medical Centre, Seoul, Korea
- 789 patients
- Median age 78, Range 74-99
- Radiotherapy
- Jan 2005 Jan 2017
- Compliance == Completion of prescribed radiotherapy dose
- Noncompliance == Discontinuation of therapy against physician advice or consent

- Decision tree with Internal validation (Bootstrap, TRIPOD 2a)
- Considered predictive factors
 - Age
 - Gender
 - Eastern Cooperative Oncology Group (ECOG)
 Performance Status
 - Distance from home to radiotherapy center (residence)
 - Radiotherapy aim
 - Cancer type
 - Health insurance status (surrogate financial status)

Dataset

Variable	Levels	Compliance	Noncompliance	Total
Age	Mean (SD)	78 (4)	78 (5)	78 (4)
Sex	Male	367 (84%)	68 (16%)	435 (55%)
	Female	317 (90%)	37 (10%)	354 (45%)
ECOG PS	Poor (2+)	50 (51%)	49 (49%)	99 (13%)
	Good (0-1)	324 (92%)	56 (8%)	690 (87%)
Residence	Far	502 (86%)	81 (14%)	583 (74%)
	Near	182 (88%)	24 (12%)	206 (26%)
Radiotherapy aim	Curative	547 (85%)	84 (15%)	631 (80%)
	Palliative	137 (85%)	21 (15%)	158 (20%)
Health insurance status	Free medical care	79 (89%)	10 (11%)	89 (11%)
	Health insurance	605 (86%)	95 (14%)	700 (89%)
Cancer type	Skin	18 (82%)	4 (18%)	22 (3%)
	Lung	148 (85%)	27 (15%)	175 (22%)
	Brain	18 (90%)	2 (10%)	20 (3%)
	Breast	36 (97%)	1 (3%)	37 (5%)
	Sarcoma	06 (86%)	1 (14%)	7 (<1%)
	Metastatic	112 (84%)	22 (16%)	134 (17%)
	Hematologic	23 (96%)	1 (4%)	24 (3%)
	Hepatobiliary	38 (83%)	8 (17%)	46 (6%)
	Head & Neck	47 (78%)	13 (22%)	60 (8%)
	Genitourinary	57 (95%)	3 (5%)	60 (8%)
	Gynecological	104 (92%)	9 (8%)	113 (14%)
	Gastrointestinal	77 (85%)	14 (15%)	91 (11%)
Total		684 (87%)	105 (13%)	789

Age

Decision Tree

Internal Bootstrap Validation

Discussion / Limitations

- Internally validated study
- Predictive factors for compliance
 - Performance status
 - Cancer type
 - Distance to clinic
 - Age
- Possible actionable insights
 - SMS?
 - Hypofractionation?
 - Reconsider chemo or dose?

Compliance of Al....

CORAL: Community in Oncology for RApid Learning

Netherlands

- MAASTRO, Maastricht, Netherlands
- Radboudumc, Nijmegen, Netherlands
- Erasmus MC, Rotterdam, Netherlands
- Leiden UMC, Leiden, Netherlands
- Elizabeth Twee Steden Ziekenhuis, Tilburg, Netherlands
- Catharina Hospital, Eindhoven, Netherlands
- Isala Hospital, Zwolle, Netherlands
- NKI Amsterdam, Netherlands
- UMCG. Groningen. Netherlands
- IKNL, Utrecht, Netherlands

Europe

- Policlinico Gemelli & UCSC, Roma, Italy
- UH Ghent, Belgium
- UZ Leuven, Belgium
- Cardiff University & Velindre CC, Cardiff, UK
- CHU Liege, Belgium
- Uniklinikum Aachen, Germany
- LOC Genk/Hasselt, Belgium
- The Christie, Manchester, UK
- State Hospital, Rovigo, Italy
- St James Institute of Oncology, Leeds, UK
- U of Southern Denmark, Odense, Denmark
- Greater Poland Cancer Center, Poznan, Poland
- Oslo University Hospital, Oslo, Norway
- Aarhus Universitetshospital, Aarhus, Denmark
- Bank of Cyprus Oncology Center, Nicosia, Cyprus
- Weston Park Hospital, Sheffield, UK
- Hull University Teaching Hospitals NHS Trust, Hull, UK
- Addenbrookes' Hospital, Cambridge, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Haukeland University Hospital, Bergen, Norway

Africa

University of the Free State, Bloemfontein, South Africa

Asia

- Fudan Cancer Center, Shanghai, China
- CDAC, Pune, India
- Tata Memorial, Mumbai, India

- Suining Central Hospital, Suining, China
- HGC Oncology, Bangalore, India
- Kerala, Kerala, India
- Apollo Hospitals, Hyderabad, India
- CMC Vellore, Vellore, India
- MVRCC, Calicut, India
- Tianjin Medical University, Tianjin, China
- Cancer Hospital of Shantou University, Shantou, China

North America

- RTOG, Philadelphia, PA, USA
- MGH, BWH, Harvard, Boston, MA, USA
- University of Michigan, Ann Arbor, USA
- Princess Margaret CC, Canada
- Ottawa Hospital Research Institute, Ottawa, Canada

South America

Albert Einstein, Sao Paulo, Brazil

Australia

- University of Sydney, Australia
- Westmead Hospital, Sydney, Australia
- Liverpool and Macarthur CC, Australia
- ICCC, Wollongong Australia
- Calvary Mater, Newcastle, Australia
- North Coast Cancer Institute, Coffs Harbour, Australia

Industry

- Varian, Palo Alto, CA, USA
- Philips, Bangalore, India
- Sohard GmbH, Fuerth, Germany
- Microsoft, Hyderabad, India
- Mirada Medical, Oxford, UK
- CZ Health Insurance, Tilburg, NL
- Siemens, Malvern, PA, USA
- Roche, Woerden, NL

Thank you for your attention

Andre Dekker | Medical Physicist | Professor of Clinical Data Science Maastro Clinic, Maastricht University, Maastricht UMC+

